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Outline of the Talk: 
n Brief motivation & narrowing down the scope 
n Vacuum birefringence: helicity dependence of vph 

n Vacuum dispersion: energy dependence vph(E) 
n  Pulsars/AGN/GRBs: why, and how we set the limits 
u 3 different types of limits from the short bright GRB 

090510 at z = 0.903 (Abdo et al. 2009, Nature, 462, 331)  
u New analysis: 3 methods, 4 GRBs (Vasileiou et al. 2013) 

u Limits on stochastic LIV (Vasileiou et al. 2014; submitted) 

n  Future prospects: the Cherenkov Telescope Array 
n Conclusions 



Quantum Gravity: a physics holy grail 
n Motivation: to unify in a self-consistent theory Einstein’s 

general relativity that dominates on large scales &     
Quantum theory that dominates on small scales (Stecker’s talk) 

                         
n Quantum effects on space-time  

structure expected to become 
strong near the Planck scale:     

lPlanck = (ħG/c3)1/2 ≈ 1.62 × 10−33 cm   

EPlanck = MPlanckc2 = (ħc5/G)1/2       

           ≈ 1.22 × 1019 GeV   

n Many models / ideas out there:  
experimental constraints needed 

                         



Astrophysics as a test bed: 
n Advantage: large energies and distances available for free 
n Disadvantage: uncontrolled experimental setup / conditions 

                         
u Vacuum birefringence: constrained by polarization 
u Vacuum dispersion: by short timescale variability 
u Pair production threshold: attenuation on the EBL 
u Electron LIV: synchrotron radiation from the Crab nebula 
u Space-time fuzziness: blur sources, broaden spectral lines  
u UHECR / ν LIV: energy spectrum / arrival time from GRBs 
u Massive gravitons: supernovae cooling 
u Cosmic string: gravitational lensing, gravity waves 
u Early universe: CMB polarization, 21 cm HI line surveys… 

                         



Vacuum energy dispersion: parameterization 
n   Some quantum-gravity (QG) models allow or even predict 

(e.g. Ellis et al. 2008) Lorentz invariance violation (LIV) 
n We directly constrain a simple form of LIV - dependence of 

the speed of light on the photon energy: vph(Eph) ≠ c 
n This may be parameterized through a Taylor expansion of 

the LIV terms in the dispersion relation: 
 

n  sk = −1, 0, 1 stresses the model dependent sign of the effect  
n The most natural scale for LIV is the Planck scale           

lPlanck ≈ 1.62 × 10−33 cm ; EPlanck = MPlanckc2 ≈ 1.22 × 1019 GeV 
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  ,   where EQG,k ≤ EPlanck  is naturally expected



Vacuum energy dispersion: parameterization 
n The photon propagation speed is given by the group velocity: 

 

n Since Eph ≪ EQG,k ≲ EPlanck ~ 1019 GeV the lowest order 
non-zero term, of order n = min{k | sk ≠  0}, dominates 

n Usually n = 1 (linear) or 2 (quadratic) are considered 
n We focus here on n = 1, since only in this case are our limits 

of the order of the Planck scale 
n We try to constrain both possible signs of the effect:  

u  sn = 1, vph < c: higher energy photons propagate slower 
u  sn = −1, vph > c: higher energy photons propagate faster 

n We stress: here c = vph(Eph  à  0) is the low energy limit of vph 
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Vacuum Birefringence: Polarization 
n Helicity (left or right circular polarization) dependence        

of the photon propagation speed: c − vph,L(E) ≈ vph,R(E) − c  
n Rotates the position angle θ of linearly polarized radiation: 
ΔϕR,L = 2Δθ = ωΔtR,L ≈ ωΔvR,LD/c2 ≈ En+1D(1+n)/ħc(EQG*,n)n 

n ΔE/E ≳ 0.2-1 ⇒ Δθ(E2) ~ 2Δθ(E1)  
   Δθ(E1) ≳ 1 ⇒ depolarization 
n ⇒ linear pol. constrains EQG*,n = ξ1*EPlanck: 

Δθ 
ΔϕR,L 

u Crab nebula (Galactic SNR; D ≈ 2 kpc)      
X/γ-rays: P ~ 46% (INTEGRAL 150-300 keV) 
⇒ ξ1* > 1.1×10 

9 (99% CL; Maccione et al. 2008) 

u Galaxy at D ~ 0.3 Gpc, optical: 
  P ~ 10% ⇒ ξ1* > 5×10 

3 (Gleizer & Nozameh 01) 



Vacuum Birefringence: Polarization 
n Helicity (left or right circular polarization) dependence        

of the photon propagation speed: c − vph,L(E) ≈ vph,R(E) − c 
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Δθ 
ΔϕR,L 

u Gamma-Ray Bursts: (z ~ 1; D ~ several Gpc): 
u Optical: P ~ 10% ⇒ ξ1* > 5×10 

6 (Fan et al. 2007) 

u X/γ-ray: P ~ 50-80% (IKAROS/GAP; 70-300 keV)                           
     

              ⇒ ξ1* > 10 
15   

          (Toma et al. 2012)  



Vacuum Birefringence: Polarization 
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u Gamma-Ray Bursts: (z ~ 1; D ~ several Gpc): 
u Optical: P ~ 10% ⇒ ξ1* > 5×10 

6 (Fan et al. 2007) 

u X/γ-ray: P ~ 50-80% (IKAROS/GAP; 70-300 keV)                           
     

              ⇒ ξ1* > 10 
15   

          (Toma et al. 2012)  
Unreliable 



Vacuum dispersion: different sources 

Centaurus A (X-rays, 
optical, sub-mm) 

property ! For better 
constraints! Pulsars! Active Galactic 

Nuclei (AGN)!
Gamma-Ray 
Bursts (GRB)!

Distance! larger! Galactic! Extragalatic! Cosmological!

Variability Time! shorter! ≳ 0.1 ms! ≳ minutes! ≳ a few ms!

Photon energies! higher! ≲ 400 GeV! ≲ TeV! ≲ tens of GeV!

# useful sources! larger! 1! a few! a few!

Best source! Crab pulsar 
(VERITAS/Fermi)!

PKS 2155-304 
(HESS)! GRB 090510!

Relative strength 
of results!

OK for n = 1!
Weak for n = 2!

Good for n = 1!
~Best for n = 2!

Best for n = 1!
~Best for n = 2!

Crab nebula (X-ray)  GRB (artist’s  
concept)  

Great, Good, OK 



Probing Vacuum dispersion Using GRBs  

(D. Pile, Nature Photonics, 2010) 

(first suggested by Amelino-Camelia et al. 1998) 

Why GRBs?  Very bright & short 
transient events, at cosmological 
distances, emit high-energy γ-rays 



GRB Theoretical Framework: 

n  γ-rays: internal shocks? emission mechanism? 
n Deceleration: the outflow decelerates (by a reverse 

shock for σ ≲ 1) as it sweeps-up the external medium 
n Afterglow: from the long lived forward shock going 
into the external medium; as the shock decelerates the 
typical frequency decreases: X-ray è optical è radio 

n Progenitors: 
u Long: massive stars 
u Short: binary merger?  

n  Jet Acceleration: 
fireball or magnetic? 



Fermi Gamma-ray 
Space Telescope 
(launched on June 11, 2008) 

n  Fermi GRB Monitor (GBM): 8 keV – 40 MeV        
(12×NaI 8 – 103 keV, 2×BGO 0.15 –  40 MeV), full sky 

n  Comparable sensitivity + larger energy range than its 
predecessor - BATSE 

n  Large Area Telescope (LAT): 20 MeV –  >300 GeV FoV 
~ 2.4 sr; up to 40× EGRET sensitivity, ≪ deadtime 

LAT FoV

GBM FoV

(Band et al. 2009) 



Constraining LIV Using GRBs 
n  A high-energy photon Eh would arrive after (in the sub-luminal 

case: vph < c, sn = 1), or possibly before (in the super-luminal 
case, vph > c, sn = −1) a low-energy photon El emitted together 

n The time delay in the arrival of the high-energy photon is: 

n The photons Eh & El do not have to be emitted at exactly the 
same time & place in the source, but we must be able to limit 
the difference in their effective emission times, i.e. in their 
arrival times to an observer near the GRB along our L.O.S 

n Our limits apply to any source of energy dispersion on the 
way from the source to us, and may constrain some (even 
more) exotic physics (ΔtLIV à ΔtLIV + Δtexotic)  
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source 

observer cΔtem 
Δtobs = Δtem + ΔtLIV 
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Method 1 
n Limits only sn = 1 - the sub-luminal case: vph < c, & positive 

time delay, ΔtLIV = th − tem > 0 (here th is the actual measured 
arrival time, while tem would be the arrival time if vph = c) 

n We consider a single high-energy photon of energy Eh and 
assume that it was emitted after the onset time (tstart) of the 
relevant low-energy (El) emission episode: tem > tstart 

n è  ΔtLIV = th − tem < th − tstart  

n A conservative assumption: tstart = the onset of any observed 
emission from the GRB 

tstart 

time 

flu
x  

th tem 

ΔtLIV 



Limits on LIV: GRB080916C (z ≈ 4.35) 
n  GRB080916C: highest 

energy photon (13 GeV) 
arrived 16.5 s after low-
energy photons started 
arriving (= the GRB trigger) 
è conservative lower limit: 
EQG,1 > 1.3×1018 GeV   

                        ≈ 0.11EPlanck 

n  This improved upon the 
previous limits of this type, 
reaching 11% of EPlanck 

min EQG,1  
(GeV) 

1016 1017 1018 1015 1.8x1015   

Pulsar 
(Kaaret 99) 

0.9x1016   1.8x1017   0.2x1018 4x1016 

GRB 
(Ellis 06) 

GRB 
(Boggs 04) 

AGN 
(Biller 98) 

AGN 
(Albert 08) GRB080916C Planck mass 

1019 1.3x1018 1.2x1019 

(Abdo et al. 2009, Science, 323, 1688) 

260 keV – 5 MeV 

8 keV – 260 keV 

LAT  raw 

LAT > 100 MeV 

LAT > 1 GeV 



GRB090510: L.I.V 
n  A short GRB (duration ~1 s) 
n  Redshift: z = 0.903 ± 0.003 

n  A ~ 31 GeV photon arrived at 
th = 0.829 s after the trigger 

n  We carefully verified it is a 
photon; from the GRB at >5σ 

n  We use the 1-σ lower bounds 
on the measured values of Eh 
(28 GeV) and z (0.900) 

n  Intrinsic spectral lags known 
on timescale of individual 
pulses: weak effect expected 

(Abdo et al. 2009  
  Nature, 462, 331) 



GRB090510: L.I.V 
n  Method 1: different choices of 
tstart from the most conservative 
to the least conservative 

n  tstart = −0.03 s precursor onset 
è  ξ1 = EQG,1/EPlanck > 1.19   

n  tstart = 0.53 s onset of main 
emission episode è ξ1 > 3.42   

n  For any reasonable emission 
spectrum a ~31 GeV photon is 
accompanied by many γ’s above 
0.1 or 1 GeV that “mark” its tem 
n  tstart = 0.63 s, 0.73 s onset of 

emission above 0.1, 1 GeV               
                è ξ1 > 5.12, ξ1 > 10.0 

(Abdo et al. 2009  
  Nature, 462, 331) 

n = 2 



GRB090510: L.I.V 
n  Method 2: least conservative 
n  Associating a high energy 
photon with a sharp spike in 
the low energy lightcurve, 
which it falls on top of  

n  Limits both signs: sn = ±1   
n  Non-negligible chance 
probability (~5-10%), but still 
provides useful information  

n  For a 0.75 GeV photon during 
precursor: |Δt| < 19 ms, ξ1 > 1.33  
n  For the 31 GeV photon (shaded 

vertical region) è |Δt| < 10 ms 
and ξ1 = EQG,1/EPlanck > 102  

(Abdo et al. 2009  
  Nature, 462, 331) 



Method 3: DisCan (Scargle et al. 2008)  
n Based on lack of smearing of the fine time structure (sharp 

narrow spikes in the lightcurve) due to energy dispersion 

n Constrains both possible signs of the effect: sn = ±1 
n Uses all LAT photons during the brightest emission episode 

(obs. range 35 MeV – 31 GeV); no binning in time or energy 

n Shifts the arrival time of photons according to a trail energy 
dispersion (linear in our case), finding the coefficient that 
maximizes a measure of the resulting lightcurve variability 

n We found a symmetric upper limit on a linear dispersion:          
|Δt/ΔE| < 30 ms/GeV (99% CL)  è  EQG,1 > 1.22 EPlanck  

n Remains unchanged when using only photons < 1 or 3 GeV 
(a very robust limit) 



Limits on LIV from Fermi GRBs (2009) 
GRB !

duration!
or!

class!

# of 
events  

> 0.1 GeV!

# of 
events  

 > 1 GeV!
method! Lower Limit on!

MQG,1/MPlanck!
Valid 
for!
Sn =!

Highest 
photon 
Energy!

redshift!

080916C! long! 145! 14! 1! 0.11! +1! ~ 13 GeV! ~ 4.35!

090510! short! > 150! > 20!

1!
!
2!
!
3!

1.2, 3.4, 5.1, 10!
!

102!
!

1.2!

+1!
!

±1!
!

±1!

~ 31 GeV! 0.903!

090902B! long! > 200! > 30! 1! 0.068! +1! ~ 33 GeV! 1.822!

090926! long! > 150! > 50! 1 ,  3! 0.066,  0.082! +1! ~ 20 GeV! 2.1062!

n Method 1: assuming a high-energy photon is not emitted 
before the onset of the relevant low-energy emission episode 

n Method 2: associating a high-energy photon with a spike in 
the low-energy light-curve that it coincides with 

n Method 3: DisCan (dispersion cancelation; very robust) – 
lack of smearing of narrow spikes in high-energy light-curve 



Newer Analysis of the same 4 GRBs: 
(Vasileiou, Jacholkowska, Piron, Bolmont, Couturier, Granot, Stecker, 

Cohen-Tanugi & Longo 2013, PRD, 87, 122001)  

n Use 3 different analysis methods:  complimentary in 
sensitivity & improves reliability of results 

u  PairView (PV) 
u  Sharpness Maximization Method (SMM) 

u  Maximum Likelihood (ML) 

n Use same 4 brightest Fermi/LAT GRBs with known redshifts 
n The new analysis methods improve the sensitivity/LIV limits 



Method A: PairView 
n  calculate spectral lags li,j between all photon pairs in a dataset  
n The li,j distribution peaks approximately at the true value τn  

n This peak serves the best estimate     of the LIV parameter τn 

n  If data has no lag, there will still be 
a peak but at zero 

n  Peak width/height depend on the 
statistical strength of the dataset: 
many GeV photons in a bright 
pulse will give the strongest signal 

Applied to GRB 090510 for n = 1 

KDE fit 

li,j histogram  



Method B: Sharpness Maximization 
n Similar to DisCan (method 3 of Abdo et al. 2009, Nature, 462, 331; 

dispersion smears sharp lightcurve features ⇒ cancelling it 
will make the lightcurve sharper). New improvement:  

n Averages arrival time differences of ρ neighboring photons 
n Sharpness measure:     
                                  

n  ρ is optimized using simulations 
    (to maximize the sensitivity)  

n  t’i = ti − τnEi
n is the de-dispersed 

arrival time of the ith photon 
whose measured arrival time is ti 
for a trial value of τn 

n  best estimate      maximizes S(τn) 

Applied to GRB  090510 for n = 1 



Methods A, B: Confidence Intervals  
n Apply the method on many data sets derived from the actual 

one by randomizing association between photon time/energy 
n For each randomized data set we produce a 
n The distribution fr of              is used to approximate the PDF 

of the error 
n Confidence intervals for τn calculated from the quantiles of fr                                  
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Method C: Maximum Likelihood 
n Existing method previously used in LIV studies with AGN 

(Martinez & Errando 2009; Abrmowski et al. 2011).                                  
1.  Model the GRB lightcurve for the case of no LIV 

a)   Lightcurve template: obtained from low energy photons below 
a threshold energy, E < Eth, where LIV effects are negligible 

b)  Spectral template: from fit to all data (time-averaged spectrum) 

2.  Compute likelihood L of detecting the 
high-energy photons (E > Eth) in the data 
given our template & trial value of τn 

3.  Our best estimate     for τn is that which 
maximizes L  

n Confidence interval produced by applying 
the method on simulated data sets 



Accounting for GRB Intrinsic Effects: 

n Model GRB effects (τGRB) ?  No reliable model available yet 
⇒ instead we choose to model τGRB conservatively: 

n Assume observations dominated by GRB-intrinsic effects 
u  τGRB  PDF chosen to match the options for τn  allowed  by our data 
u  E.g. if data has large positive dispersion – model τGRB to allow this 

n This choice for modeling τGRB gives: 
u  Symmetric CIs on τLIV, which correspond to the worst case (yet 

reasonable) scenario for GRB-intrinsic effects 
u  Most conservative (least stringent) overall limits on τLIV 

τn = τGRB + τLIV 
 τn = the total dispersion, which our methods constrain  
 τLIV = LIV-induced dispersion: the one relevant for our limits 
 τGRB = intrinsic dispersion (treated as a nuisance parameter) 



All 3 Methods: Results (95% CL, n = 1) 
n ~2 times stricter than the best 

previous limits (horizontal lines)  
n Horizontal bars: mean limits 

over 3 methods, accounting for 
GRB intrinsic effects 

n Neglecting intrinsic effects can 
lead to unrealistically strict limits 

Sub-luminal 

Super-luminal 



Very New: Limits on Stochastic LIV 
(Vasileiou, Granot, Piran & Amelino-Camelia)  

n The concept of spacetime foam: 
suggests LIV may be stochastic 

n Photons of same energy emitted 
together arrive at different times 
according to some PDF 

n Differs from deterministic LIV 
where Eph uniquely determines 
vph & vph − c has the same sign: 

n We considered a Gaussian PDF: 
𝑣(𝐸) = 𝑐 + 𝛿𝑣(𝐸) ,  𝛿𝑣 = G(0, σv) 
σv(E) = (E/ξs,ns

EPlanck)nsc 



Data Analysis: Maximum Likelihood 
n We generalized this existing method to stochastic LIV 
n E < Eth used for emission template; E > Eth used for likelihood 
n We chose Eth = 300 MeV (negligible LIV + enough photons < Eth) 
n Time interval: 0.7-1.0 s (brightest, most variable, highest Eph & 

relatively stable emission spectrum; 316 γ’s < Eth, 37 γ’s > Eth) 
n Optimized lightcurve reconstruction method with simulations 

u  KDE with fixed 6 ms bandwidth preliminary 



Data Analysis: Maximum Likelihood 
n  σT(E) = Tcσv(E)/c = w E,    w(z) = σT(E)/E = Tc/ξs,1EPlanck                    

stochastic LIV parameter  
          (measured in s/GeV): 
n Likelihood: product of probabilities  
   for all high-energy photons (E > Eth):  
n For each photon, a convolution is done to account for all 

possible emission times with the appropriate probability 

 
n Altogether: 



Initial Results & Confidence Intervals: 
n Our best estimate for w that maximizes L(w): wbest = 0 s/GeV 
n Confidence Interval: Feldman-Cousin method (computationally 

expensive, but provides proper coverage & is less sensitive to biases) 
u  Use artificial lightcurve close to detected one + inject a known w 
u  Many simulations (random realizations) for each trial value of w 
u  ML applied to each realization ⇒ wbest(w) ⇒ global confidence belt 
u  ⇒ derive Confidence Interval for w using wbest from the actual data  

n CI on w  ⇒ CI on ξs,1 
n We obtain a Planck-scale  

   limit (the 1st for stochastic  
   or fuzzy LIV) preliminary 



Future – Cherenkov Telescope Array 
n  Energy range: ~ 20 GeV to ~ 500 TeV 

u  an order of magnitude more sensitive than current instruments 
around 1 TeV (~150M€ price tag), better angular/energy resolution 

u  >1000 members in 27 countries 
u  Preparatory Phase 2011-2014, construction 2015-2019? 

n  2 sites (southern + northern hemispheres) 
n  Hundreds of telescopes of 3 different sizes 



Fermi 

CTA 

1 min 

1 hour 

10 hours 

100 hours 

1 year 

30 GeV 

A bigger difference for transient sources 

e.g. GRBs, AGN, 
 microquasars... 



Prospects for LIV studies with CTA GRBs 
n Method 1: it may be difficult to do much better 

u Our current limit |Δt/ΔE| < 30 ms/GeV would 
require Eh > 1 TeV for a response time of 30 s 

u at > 1 TeV intrinsically fewer photons + EBL  
n Method 3: might work best 

u Sharp bright spikes up to 
   high energies exist also 
   well within long GRBs 
u tvar ~ 0.1 s & Eh ~ 0.1 TeV 
  could do ~30 times better 

n A short GRB in CTA FoV  
(survey mode) would be great 
10 ms, 1 TeV:  >103 times better 

 

GRB090926A 



Conclusions: 
n Astrophysical tests of QG can help – look for them 

n GRBs are very useful for constraining LIV 

n Bright short GRBs are more useful than long ones 

n EQG,1/EPlanck ≳ a few even when conservatively 
accounting for possible intrinsic source effects  

n New Planck scale limits on stochastic / fuzzy LIV  

n Quantum-Gravity Models with linear (n = 1) 
photon energy dispersion are disfavored 


