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Abstract

Over the recent years, a new linear method for compressing high-dimensional data (e.g.,
images) has been discovered. For any high-dimensional vector x, its sketch is equal to Ax,
where A is an m x n matrix (possibly chosen at random). Although typically the sketch length
m is much smaller than the number of dimensions n, the sketch contains enough
information to recover an approximation to x. At the same time, the linearity of the
sketching method is very convenient for many applications, such as data stream computing
and compressed sensing.

The major sketching approaches can be classified as either combinatorial (using sparse
sketching matrices) or geometric (using dense sketching matrices). They achieve different
trade-offs, notably between the compression rate and the running time. Thus, it is desirable
to understand the connections between them, with the goal of obtaining the "best of both
worlds" solution. Several recent results established such connections, indicating that the two
approaches are just different manifestations of the same underlying phenomenon. This
enabled the development of novel algorithms, including the first algorithms that provably
achieve the (asymptotically) optimal compression rate and near-linear recovery time
simultaneously.

In this talk we give an overview of the results in the area, as well as look at some of them in
more detail. In particular, we will describe a new algorithm, called "Sequential Sparse
Matching Pursuit (SSMP)". In addition to having the aforementioned theoretical guarantees,
the algorithm works well on real data, with the recovery quality often outperforming that of
more complex algorithms, such as |_1 minimization.
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