Playing 2-to-2 games with Grassman graphs

Guy Kindler, The Hebrew University

Abstract

It is by now well known that optimization problems are often hard not just to solve, but even to approximate. However the field of "hardness-of-approximation" does not only solve questions about the approximability of optimization problems -- over the years it also introduced many new and fascinating questions in more classical branches of study, such as geometry, combinatorics, and analysis.

Indeed, in this talk we present a new hypothesis concerning Grassman graphs (namely, graphs in which nodes are l-dimensional subspaces, and an edge connects two subspaces if their intersection is of dimension (l-1)). The hypothesis seems interesting and natural to us, and if true, we show that it implies hardness-of-approximation for "2-to-2" games. Hardness with similar parameters for "1-to-1" games would yield the famous Unique Games conjecture of Khot, while no hardness result is known with these parameters even for r-to-r games for any constant r.

This is a joint work with Irit Dinur, Subhash Khot, Dor Minzer, and Muli Safra. It extends and builds substantially on a recent result of Minzer, Khot and Safra.