Local max-cut in smoothed polynomial time

Yuval Peres, Microsoft Research

Abstract

In 1988, Johnson, Papadimitriou and Yannakakis wrote that "Practically all the empirical evidence would lead us to conclude that finding locally optimal solutions is much easier than solving NP-hard problems". Since then the empirical evidence has continued to amass, but rigorous proofs of this phenomenon have remained elusive. A canonical (and indeed complete) example is the local max-cut problem, for which no polynomial time method is known. In a breakthrough paper, Etscheid and Roglin (2014) proved that the smoothed complexity of local max-cut is quasi-polynomial, i.e., if arbitrary bounded weights are randomly perturbed, a local maximum can be found in n^O(logn) steps. Building on their ideas, we prove smoothed polynomial complexity for local max-cut, replacing the O(log n) in the exponent by 15. This confirms that finding local optima for max-cut is much easier than solving it.

Joint work with Omer Angel, Sebastien Bubeck, and Fan Wei. See https://arxiv.org/abs/1610.04807v1